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Abstract. The advection of passive tracers in a system of 4 identical point vortices is studied when the
motion of the vortices is chaotic. The phenomenon of vortex-pairing has been observed and statistics of
the pairing time is computed. The distribution exhibits a power-law tail with exponent ∼ 3.6 implying
finite average pairing time. This exponents is in agreement with its computed analytical estimate of 3.5.
Tracer motion is studied for a chosen initial condition of the vortex system. Accessible phase space is
investigated. The size of the cores around the vortices is well approximated by the minimum inter-vortex
distance and stickiness to these cores is observed. We investigate the origin of stickiness which we link to
the phenomenon of vortex pairing and jumps of tracers between cores. Motion within the core is considered
and fluctuations are shown to scale with tracer-vortex distance r as r6. No outward or inward diffusion of
tracers are observed. This investigation allows the separation of the accessible phase space in four distinct
regions, each with its own specific properties: the region within the cores, the reunion of the periphery of
all cores, the region where vortex motion is restricted and finally the far-field region. We speculate that
the stickiness to the cores induced by vortex-pairings influences the long-time behavior of tracers and their
anomalous diffusion.

PACS. 05.45.Ac Low-dimensional chaos

1 Introduction

The understanding of the motion of a passive tracer evolv-
ing in an unsteady incompressible flow is fundamental due
to its numerous applications in various fields of research.
They range from pure mathematical interest to geophys-
ical flows or chemical physics. The underlying problem is
related to the Lagrangian representation of the fluid evolu-
tion. This approach uncovered the phenomenon of chaotic
advection [1–9], which refers to the chaotic nature of La-
grangian trajectories in a non chaotic velocity field and
hence reflects a non-intuitive interplay between the Eu-
lerian and Lagrangian perspective. The ongoing interest
in geophysical flows sustains interest in two-dimensional
models [10–16]. In case of an incompressible flow, the
tracer’s motion can be described by a non-autonomous
Hamiltonian. Another peculiarity of two-dimensional tur-
bulent flows is the presence of the inverse energy cas-
cade, which results in the emergence of coherent vortices,
dominating the flow dynamics [17–23]. In order to tackle
these problems, point vortices have been used with some
success to approximate the dynamics of finite-sized vor-
tices [24–26], as for instance in punctuated Hamiltonian
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models [23,27,28]. Recent work shows that high-
dimensional point vortex systems have both the features
of extremely high-dimensional as well as low-dimensional
systems [12]; moreover, the merging processes observed in
decaying two-dimensional turbulence have been shown to
result from the interaction of a few number of close vor-
tices [29] and make the understanding of low dimensional
vortex dynamics an essential ingredient of the whole pic-
ture [30,31].

Another aspect of the problem is related to transport
properties, which for various observations and models ex-
hibit anomalous features. These anomalous properties are
linked to Levy-type processes and their generalizations
[32–36]. These properties are often related to the pres-
ence of coherent structures, which can be identified from
a Lagrangian perspective by the means of an analytic cri-
terion [37]. In previous work, the advection in systems
of three point vortices evolving on the plane has been ex-
tensively investigated [38–41]. Three point-vortex systems
on the plane have the advantage of being an integrable
system and often generate periodic flows (in co-rotating
reference frame) [42–47]. This last property allows the
use of Poincaré maps to investigate the phase space of
passive tracers whose motion belongs to the class of
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Hamiltonian systems of 1−1/2 degree of freedom. A well-
defined stochastic sea filled with various islands of regular
motion is observed and among these are special islands
also known as “vortex cores” surrounding each of the three
vortices. Transport in these systems is found to be anoma-
lous, and the exponent characterizing the second moment
exhibit a universal value close to 3/2, in agreement with an
analysis involving fractional kinetics [41]. In this light, the
origin of the anomalous properties and its multi-fractal na-
ture is clearly linked to the existence of islands within the
stochastic sea and the phenomenon of stickiness observed
around them [40,41]. Nevertheless the inherent periodic
nature of the motion of three vortices may be thought
as artificial when considering systems with more degree
of freedom and therefore universal long time behavior of
transport properties may be considered as particular to
these low-dimensional periodic systems.

The motion of N point vortices on the plane is generi-
cally chaotic for N ≥ 4 [48–50]. However, a system of four
vortices remains a low dimensional system, but loses the
periodic property of three point-vortex systems and is in
this sense a more realistic modelization of observed low
dimensional behavior. The chaotization of the underlying
flow is expected to bring modifications to the transport
properties studied in [38–41]; the nature and relevance of
the changes is although unknown. A precise study of these
questions is required and the answer consequently pro-
vides a way to test the robustness of the results obtained
with three vortices.

In this paper we investigate numerically the motion of
a passive tracer in the field generated by four identical
point vortices on the plane. This study follows previous
work found in references [51] and [52]. In reference [51],
a first physical picture was given and the persistence of
vortex cores where tracers are trapped was clearly stated,
while in reference [52] a rich extensive study is presented
and emphasis is made on the quasi-regular motion of trac-
ers in the region far from the vortices. We note that in
both of these papers, the characterization of “regular” tra-
jectories is defined by the means of vanishing Lyapunov
exponents. For instance, when a tracer is trapped within
cores, despite the core’s chaotic motion, two nearby ini-
tial conditions do not diverge exponentially. The goal of
the present work is to identify the different structures and
different mechanisms which may influence the transport
properties of passive particles. Since parameter space is
quite large, the philosophy is essentially descriptive, and
tracers motion are studied for one arbitrary chosen initial
condition of the vortex system. As the far field region has
been investigated [52], we focus on the motion near or in-
side the cores, which we believe should be generic even for
many vortex systems. We will come to the issue of trans-
port properties and finite-time Lyapunov exponents in a
forthcoming publication.

In Section 2, we describe briefly the motion of four
vortices. We present a Poincaré section of the vortex sys-
tem, which provides a good test to our numerical integra-
tion and allows to characterize easily the chaotic or non
chaotic nature of the motion. A new section capturing all

equivalent physical realizations of the flow is introduced.
This section shows the existence of non-uniformity in the
phase space, which is linked to the permutation of vortices
and is related to the observation of vortex-pairing. Statis-
tics on pairing times are computed and exhibit power-law
tails, implying finite average pairing time. In Section 3
the motion of tracers is studied, the presence of cores is
confirmed and stickiness to the vortex cores is observed.
The influence of vortex pairing is studied, which proves
to be a good trapping (untrapping) mechanism of tracers
around the cores. Pairing of vortices allows a special be-
havior of tracers jumping from one core to another core,
which opens the possibility in many vortex systems of spe-
cial transport features resulting from jumps between cores.
The motion within the core is studied, dependence of fluc-
tuations as a function from the distance to the vortex are
computed, and no typical diffusion behavior is found.

2 Vortex motion

2.1 Definitions

The solution of the two-dimensional Euler equation, de-
scribing the dynamics of a singular distribution of vorticity

ω(z) =
N∑
α=1

kαδ (z − zα(t)) , (1)

where z locates a position in the complex plane, zα = xα+
iyα is the complex coordinate of the vortex α, and kα its
strength, in an ideal incompressible two-dimensional fluid
can be described by a Hamiltonian system ofN interacting
particles (see for instance [53]), referred to as a system of
N point vortices. The system’s evolution writes

kαżα = −2i
∂H

∂z̄α
, ˙̄zα = 2i

∂H

∂(kαzα)
, (α = 1, · · · , N) ,

(2)

where the couple (kαzα, z̄α) are the conjugate variables of
the Hamiltonian H. The nature of the interaction depends
on the geometry of the domain occupied by the fluid, for
the case of an unbounded plane, the resulting complex
velocity field v(z, t) at position z and time t given by the
sum of the individual vortex contributions, writes:

v(z, t) =
1

2πi

N∑
α=1

kα
1

z̄ − z̄α(t)
, (3)

and the Hamiltonian becomes

H = − 1
2π

∑
α>β

kαkβ ln |zα − zβ| = −
1

4π
lnΛ . (4)

The translational and rotational invariance of H, provides
the motion equations (2) three other conserved quantities
besides the energy,

Q+ iP =
N∑
α=1

kαzα, L2 =
N∑
α=1

kα|zα|2. (5)
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Table 1. Effect of the subgroup D4 on the values of (I1, φ1).

permutation I1 φ1

(1, 2, 3, 4) I1 φ1

(4, 1, 2, 3) I1 φ1 − π/2
(2, 3, 4, 1) I1 φ1 + π/2

(2, 1, 4, 3) −I1 −φ1 + π/2

(3, 4, 1, 2) I1 φ1

(4, 3, 2, 1) −I1 −φ1 − π/2
(3, 2, 1, 4) −I1 −φ1

(1, 4, 3, 2) −I1 −φ1

Among the different constants of motion, there are three
independent first integrals in involution: H, Q2 + P 2 and
L2, consequently the motion of three vortices on the plane
is always integrable and chaos arises when N ≥ 4.

2.2 Canonical transformations

Due to the chaotic nature of 4-point vortex system, the
understanding of vortex motion necessitates a different ap-
proach than for integrable 3-vortex systems. We follow
reference [49] and perform a canonical transformation of
the vortex coordinates. This transformation results in an
effective system with 2 degrees of freedom, providing a
conceptually easier framework, best suited for a detailed
analysis of the motion of four identical vortices. For in-
stance, this transformation allows to perform well defined
two-dimensional Poincaré sections, from which the prop-
erties of the motion are analyzed. The details of the trans-
formation are not given here but the outline is the follow-
ing, using zα (α = 1, · · · , 4) as the complex coordinates of
the four vortices.

(2Jn)
1
2 eiθn = N−

1
2

N∑
α=1

exp(i(2πn/N)(α− 1))zα,

n = 0, · · · , N − 1, (6)

with new canonical variables{
φ1 = 1

2 (θ1 − θ3), φ2 = 1
2 (θ1 + θ3)− θ2, φ3 = θ2

I1 = J1 − J3, I2 = J1 + J2, I3 = J1 + J2 + J3 .

(7)

The resulting Hamiltonian is rather complicated but in-
dependent of φ3, meaning that I3 = 1

2L
2 is a constant

of motion. We mention that this transformation by pre-
serving and making use of the constants of motion is tak-
ing into account the continuous symmetries of the system.
However, besides these symmetries, the system is also in-
variant under the discrete group of permutations. This
last feature is particular to the situation of four identical
vortices. It has been shown that for a subgroup of these
permutation, the effect of these symmetries on the couple

Fig. 1. Poincaré section of the four vortex system in the
chaotic regime for a given initial condition. The section is com-
puted using the variables of the reduced system (8). The con-
ditions imposed are the following: R2 = 0, Ṙ2 < 0.

(I1, φ1) leads to simple linear transformations (see [49],
results are reproduced in Tab. 1), but the effect of for in-
stance the permutation (2, 1, 3, 4) on the vortex system
(which can be thought of as a relabeling z′1 = z2, z′2 = z1,
z′3 = z3, z′4 = z4), leads to no simple transformation on
(I1, φ1). The effect of these permutations on (I2, φ2) does
neither lead to simple transformations. We shall discuss
some consequences of these issues in the computation of
Poincaré sections.

To summarize the results obtained in [49], the motion
is in general chaotic, except for some special initial condi-
tions, for instance when the vortices are forming a square
the motion is periodic and the vortices rotate on a circle,
then symmetric deformation (z3 = −z1 and z4 = −z2)
of the square lead to quasiperiodic motion (periodic mo-
tion in a given rotating frame), see [49] for the complete
details.

2.3 Poincaré sections

As a prerequisite to our investigations on the passive
tracer’s motion, a basic understanding of the vortex sub-
system behavior is necessary. For this matter, an arbitrary
initial condition is chosen and a Poincaré section of the
vortex system is computed. The section is a tool which in-
sures that for the considered initial condition, the trajec-
tory has the desired generic chaotic behavior. To perform
Poincaré sections of the system, we proceed as in [49], and
use the set of canonical conjugated variables:{

R1 = (I1 + I3)
1
2 cos 2φ1, R2 = (I3 − I2)

1
2 sin 2φ2,

P1 = (I1 + I3)
1
2 sin 2φ1, P2 = (I3 − I2)

1
2 cos 2φ2,

(8)

to compute the section R2 = 0, Ṙ2 < 0.
The result of this section for the arbitrary chosen ini-

tial condition is presented in Figure 1. We notice that the
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section reproduces relatively well the results obtained in
[54], where the section was computed using a numerical
integration of the reduced system. This has the advantage
of offering a natural test of the accuracy of our numerical
integration, which is made in our case in the original vor-
tex complex variables using a fifth order simplectic Gauss-
Legendre scheme [55]. Previous analogous sections can be
seen in [49] and [54] and are all in good agreement with
our result. The motion of the vortices is chaotic. This set-
tles the choice of the initial condition of the vortex system,
which we will use from now on.

We notice that Figure 1 has symmetries which relate to
the effect of the permutations illustrated in Table 1. This
somehow reflects, as anticipated earlier on, that to equiv-
alent physical configurations of the vortex system corre-
spond different points located in different regions of the
section. Moreover the fact that the new canonical vari-
ables are not invariant under all permutation of the vor-
tices implies that equivalent physical realizations of the
system have different location in the reduced phase space,
and are likely to not all belong to the section. From the
advection point of view, equivalent physical configurations
generate identical flows, so the proposed section may not
be best suited for investigating advection and possible pat-
terns. However they prove very useful to characterize the
type of motion (periodic, quasiperiodic, chaotic). One pos-
sible way to circumvent this location problem follows from
noticing that the condition R1 = 0 or P1 = 0 remains un-
changed by the permutations listed in Table 1, and to cap-
ture all equivalent systems, we can superimpose the two
following sections R1 = 0, Ṙ1 < 0, and R′1 = 0, Ṙ′1 < 0,
where ′ stands for the values of R1 and Ṙ1 obtained af-
ter the relabeling (2, 1, 3, 4) is performed; (note that the
superimposition does not modify the obtained section for
the considered initial condition, but allows for more points
and reduces computation times). The corresponding sec-
tion is plotted in Figure 2, for the same initial conditions
used in Figure 1. We notice some differences in the sym-
metries and shapes, but also in the local density of points,
which suggests a stickiness phenomenon of the vortex sys-
tem, and therefore a possible intermittency of the flow.
We note also that this phenomenon is not related to stick-
iness close to a regular motion of the type z3 = −z1 and
z4 = −z2, as in this exact case we would have I3 = I2 (see
[49]) and stickiness would have been observed in Figure 1.
In fact, stickiness is observed on the line P2 = 0 around
R2 = 0, so J2 ≈ 0 and identically |z1 − z2 + z3 − z4| ≈ 0.
Since two vortices can not coincide a simple solution to
this last equation is requiring the vortices to be almost
aligned. We obtain a similar situation as the critical one
observed for three identical vortices [38], where alignment
of the vortices implied a permutation of two vortices. It
then reasonable to speculate that the stickiness observed
in Figure 2 is induced by permutations of two vortices.

The use of these sections cannot be more conclusive,
and may be at this point only a good indicator of some
possible behavior of the vortex system. Indeed, a simple
glance at equation (8) shows that the conditions R1 = 0 or
R2 = 0 are degenerate in φ1 respectively φ2. This implies

Fig. 2. Poincaré section of the four vortex system in the
chaotic regime for a given initial condition. The section is com-
puted using the variables of the reduced system (8). The condi-
tions imposed are the following: R1 = 0, Ṙ1 < 0. This section
has the advantage of containing all equivalent physical config-
urations resulting from any permutation of the vortices. Con-
sequently stickiness is observed, while it was not in Figure 1.
The lower plot is a zoom of the upper one.

that the plotted sections are in fact a super-imposition
of different sheets, which may be at the origin of the dif-
ferent domains observed in Figure 2 and could also ex-
plain the difference in the center part of the plots between
the chaotic sections presented in [54] and [49]. To resolve
the matter, a more detailed analysis is required, namely
the order of the degeneracy has to be established, as well
as its effect on the couples (R1, P1), (R2, P2). But even
though interesting, this is beyond the scope of this paper.
The sections have clearly established the desired chaotic
nature of the vortex motion for our choice of initial condi-
tion. Indeed, for comparison to the chaotic case, we com-
puted in Figure 3 sections for different configurations cor-
responding to quasiperiodic trajectories: the difference in
the nature of the trajectories is clear.

2.4 Vortex pairing

As mentioned, we use the initial condition correspond-
ing to the chaotic trajectories of the vortices (Fig. 1).
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Fig. 3. Poincaré sections of the four vortex system in
quasiperiodic regimes. The different initial conditions corre-
spond to continuous deformation from the square. We notice
the absence of chaos resulting in closed curves. The sections
are computed using the variables of the reduced system (8).
The conditions imposed are the following: R1 = 0, Ṙ1 < 0.

The Poincaré section illustrated in Figure 2 suggests that
the motion even though chaotic may exhibit some inter-
mittency and for a given length of time its behavior is
similar to an integrable system. As mentioned earlier on,
quasi-periodic motion of four vortices can be observed for
special initials conditions [49]. Essentially the initial con-
ditions have to be symmetrical, and since all vortices are
identical the symmetry is preserved by the dynamics. This
results in the loss of degrees of freedom, and allows thus
for an integrable motion of the vortices. We may say that
while the vortex system sticks to some domain of the phase
space, it stops exploring the whole accessible phase space
but remains on (sticks to) an object of lesser dimension
than the total amount of degrees of freedom. In this light,
stickiness can then occur when two vortex are pairing.
Namely during the chaotic motion of the vortices, two
vortices come close together and form a pair. The pair is
for a while acting like a two-vortex system perturbed by
the flow created by the two other vortices. While the pair
is formed the two vortices are bound, the systems looses
one degree of freedom, and as a consequence is sticking to
some subdomain of the phase space. We may assume that
this scenario is more likely to appear than sticking to a
symmetric configuration as in the latter, the system needs
to “loose” more degrees of freedom.

To detect if vortex-pairing occurs, the inter-vortex dis-
tance is measured while the evolution of the vortex is com-
puted. The results are represented in Figure 4 for a partic-
ular time frame, and as anticipated the pairing of vortices
is observed. For the illustrated time frame, two vortices are
coming close to each other around t = 350, and remain at
a distance d ≈ 0.7 from each other for a time δt ≈ 30.
We notice that while the pairing occurs the inter-vortex
distance remains small, and fluctuations are greatly re-
duced. These features allows us to detect vortex-pairings
in an easy way. In regards to the previously computed
Poincaré sections, it is important to mention that while a

300 320 340 360 380 400 420
0.5
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2

2.5

3

Time

r 34

Fig. 4. Typical behavior of distance between vortices versus
time. The distance r34 is plotted. A pairing of the two vortices
is identified for 350 < t < 385. We notice that while the pair is
formed the two vortices remain close to each other (r34 < 1),
and the fluctuations are greatly reduced. This allows a simple
diagnostic to numerically detect vortex-pairing.

pairing occurs the two vortices are rotating at a fast pace
around each other. This fast rotation is then likely to lead
to “quasi-permutations” of the vortex system, and is prob-
ably the reason why we observe stickiness in Figure 2; since
none is observed in Figure 1, we confirm that stickiness to
quasi-periodic motion resulting from symmetrical initial
conditions is less likely to happen than vortex-pairing.

2.5 Statistics of the pairing time

In previous work [40,41], it has been clearly shown that
stickiness by providing long coherent motion leads to
anomalous transport properties, and distributions with
power law tails. As pairing can be considered a sticky phe-
nomenon and is very likely to influence the motion of pas-
sive tracers, it is important to obtain some statistical data
on pairing times. For this purpose, a computation of vor-
tex motion up to time t = 105 was made. The detection of
pairing events is obtained using Figure 4: a pairing occurs
if for a given length of time two vortices stay close to-
gether. This definition is rather vague and some arbitrary
cutoff must be done. The arbitrary time length chosen was
δt = 4, which does not affect the behavior of large pairing
time, and the distance from one vortex to another is such
that rij = |zi − zj | ≤ d. To measure the influence of this
last cutoff, we chose to use three different values d = 1,
d = 0.9 and d = 0.8. We found enough pairings to obtain
a distribution of pairings that last longer than a time τ ,
meaning we computed the density

N(T > τ) ∼
∫ ∞
τ

ρ(T )dT , (9)

where ρ(T )dT is the probability of an event to last a time
T . The results are shown in Figure 5, where we notice that
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Fig. 5. Number of pairings N versus time length τ . Only pair-
ings lasting longer than τ = 11 are considered. The purpose of
the different curves is to show the error-bar effects induced by
the chosen inter-vortex distance cutoffs d = 0.8, 0.9, 1 which
respectively correspond to the dashed-dotted, solid and dashed
lines. The tail of the curve shows a power law decay with co-
efficient (α − 1) ≈ −2.66. The initial part of the curve arises
error-bars. The run-time is t = 105.

some rare events are lasting a relatively long time, and the
different curves are corresponding to different possible cut-
off distance for d, regarding the detection of events. The
analysis of the distribution’s tail is done by the Log-Log
plot in Figure 5. A power-law decay of the tail of the type
τ−α+1 with exponent α ∼ 3.66 ± 0.1 is observed, which
translates in non-zero probability of very long rare events:
long lasting pairing occurs. The behavior of the probabil-
ity density of pairing ρ(τ) lasting a time τ , is obtained
from equation (9)

ρ(τ) =
dN
dτ

, (10)

which leads to a power law decay of the type ρ ∼ τ−α ∼
τ−3.7±0.1. This behavior translates in finite average pair-
ing time, and second moment. However since α is close
to 4 and the accuracy obtained for α is not perfect, we
cannot be conclusive about the divergence of the third
moment. We insist that as expected, the long-lasting time-
correlations induced by a typical sticking behavior, results
in a power-law decay of the distribution’s tail. We call α
the pairing exponent and provide its estimate in the fol-
lowing subsection

2.6 Pairing exponent

The main idea used to obtain an estimate of the value
of the paring exponent α follows the work presented in
references [41,56]. The starting point is the occurrence of
an island of stability resulting in ballistic and accelera-
tor modes. Such islands appear in the stochastic sea as
a result of a parabolic bifurcation [57] and correspond to

the so-called tangled islands [58]. This is a fairly general
statement and it is hence reasonable to assume that the
phenomenon of vortex-pairing results from the rise of such
islands in the stochastic sea, i.e the formation of virtual
potential well for the rotational dynamics of a pair of vor-
tices. In this situation, we use the general form proposed
in [57] and write an effective Hamiltonian for the pair of
vortices (see also [56] and [59]):

Heff = c(∆P )2 − a∆Q1 − b∆Q2 − V3(∆Q1,∆Q2) , (11)

where ∆P is a generalized momentum (angular momen-
tum) of the pair and ∆Q1,∆Q2 are the generalized co-
ordinates of the corresponding vortices. The interaction
potential V3 is a third order polynomial, as higher order
terms in ∆Qj can be neglected for the effective Hamilto-
nian; and a, b, c are constants. Let us explain the expres-
sion (11) in more details.

Let us assume that the bifurcation corresponds to the
appearance of an island in the stochastic see at some
phase space point ξ∗ = (P ∗1 , P

∗
2 , Q

∗
1, Q

∗
2). After the bi-

furcation occurs, the island has a finite size and any tra-
jectory located within the island corresponds to periodic
or quasiperiodic dynamics characterized by its coordi-
nates ξ = (P1, P2, Q1, Q2). It is then convenient to intro-
duce the relative coordinates (∆P1,∆P2,∆Q1,∆Q2) by
∆ξ = ξ − ξ∗. Since the pair is rotating within a plane, in
the whole phase space, we can consider that angular mo-
mentum is conserved, hence we only have one generalized
momentum in equation (11), while the linear and cubic
terms are prescribed by the nature of the bifurcation.

The following steps are fairly formal (see also [41] and
[59]). Let us consider a trajectory which is close to the
island’s edge. A small perturbation is then likely to allow
the trajectory to “escape” from the island or its vicinity
and consequently to destroy the vortex pair. The phase
volume of the escaping trajectory writes:

δΓ = δPδQ1δQ2 , (12)

where δP , δQ1, and δQ2 are the values ∆P , ∆Q1 and
∆Q2 of the escaping trajectory. Since the trajectory is
close to the islands edge, we can estimate from equa-
tion (11)

δPmax ∼ δQ
3
2
j , (13)

where we have assumed V3 ∼ Q3
j , (j = 1, 2). Using this

last expression (13), we obtain for (12)

δΓ = δQ
3
2
j δQ1δQ2 ∼ δQ

7
2 , (14)

where we assumed δQ1 ∼ δQ2 ∼ δQ. Due to the periodic
or quasiperiodic nature of the trajectories within the is-
land, any trajectory within its neighbourhood will have a
ballistic type behavior, hence δQ ∼ t, i.e

δΓ ∼ t 7
2 . (15)

The probability density to escape the island vicinity after
being in its neighbourhood for a time t (i.e time-length of
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Table 2. Measured minimum distance between two vortices,
with respect to simulation time. We get roughly min(rij) ∼ 0.6,
which translates that the core’s radius r is such that r < 0.3.

Time of simulation Minimum distance

10 000 0.6000

20 000 0.5980

30 000 0.5980

50 000 0.5960

100 000 0.5960

the pairing) within an interval dt is

ρ(t) ∝ 1
δΓ (t)

∼ t− 7
2 , (16)

this results gives us directly the estimate of the exponent
α ≈ 7/2, which is very close to the observed value 3.7±0.1.

Although this estimate is not rigorous, it can provide
an insight on the origin of different characteristic expo-
nents of trapping time distributions.

2.7 Minimum distance between two vortices

To conclude on vortex motion, we measure the minimum
distance between two vortices. Indeed, as suggested in [51],
the size of the cores surrounding the vortices is related to
the minimum distance of approach between two vortices
for a 3-vortex system [41]. The minimum distance is nu-
merically measured and results are reported in Table 2,
which give the value dmin ≈ 0.6. An analytical estima-
tion of the minimum inter-vortex distance can be obtained
(lower bound), by assuming that the minimum occurs dur-
ing a pairing, and that this minimum is small compared
to the other inter-vortex distances which we can assume
to be all similar to a given distance dav. Under these con-
ditions the the constants of motions become

K ≡
(

4∑
l=1

kl

)
L2 − (Q2 + P 2)

=
4∑

l6=m
klkm|zi − zj |2 = d2

min + 5d2
av ≈ 5d2

av , (17)

and

Λ = exp(−4πH) ≈ d2
mind

10
av . (18)

Using both equations (17) and (18) we obtain a simple
estimation for the minimum inter-vortex distance

dmin =

√(
5
K

)5

Λ . (19)

We now use the expression (19), with the values for
the constant of motions given by the initial positions

of the vortices used for the simulations: [(1.747, 1.203)
(−
√

2/2, 0) (
√

2/2, 0) (0,−1)]. This leads to dmin ≈ 0.58,
in very good agreement with the results reported in
Table 2.

Having a rough picture of the underlying vortex-
motion, we now focus on the behavior of tracers.

3 Particle motion

3.1 Definitions

The evolution of a tracer is given by the advection equa-
tion

ż = v(z, t) (20)

where z(t) represent the position of the tracer at time t,
and v(z, t) is the velocity field. For a point vortex sys-
tem, the velocity field is given by equation (3), and equa-
tion (20) can be rewritten in a Hamiltonian form:

ż = −2i
∂Ψ

∂z̄
, ˙̄z = 2i

∂Ψ

∂z
(21)

where the stream function

Ψ(z, z̄, t) = − 1
2π

4∑
α=1

kα ln |z − zα(t)| (22)

acts as a Hamiltonian. The stream function depends on
time through the vortex coordinates zα(t), implying a non-
autonomous system.

3.2 Accessible phase space

A first step in understanding the motion of passive trac-
ers is to determine their accessible domain in other words,
where they move. Since the motion of the vortices which
are driving the flow is chaotic, we cannot use Poincaré
maps to visualize the phase space as in periodic 3-vortex
systems. The possible use of Poincaré recurrences as an
analog to the period should also reveal itself hazardous
and numerically costly, as pairing was observed in the vor-
tex system, and stickiness is known to alter Poincaré re-
currences statistics [40,41]. An alternative to phase space
visualization was presented in [52], where the space of
initial conditions was investigated by measuring for each
point its corresponding finite time Lyapunov exponent.
This method was very successful and allowed to visual-
ize “regular” regions around vortices and in the region
far from the vortices, a very similar picture as the one
observed in three vortex systems.

To confirm these results and get an idea of the acces-
sible phase space; the positions of vortices and tracers at
different times are recorded and plotted in Figure 6. This
gives some first insights on the dynamics. The motion of
the vortices is confined within a circular region (“the re-
gion of strong chaos” [52]). In fact, the conservation of the
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Fig. 6. Accessible phase space for the particles (gray), and the
four vortices (dark). The trajectories of the vortices and tracers
are plotted on the plane. We notice that the tracers have access
to a broader domain in agreement with results found in [52].
The initial position of the tracers are taken in the region of
“strong” chaos.

angular momentum L2 (see Eq. (5)) limits the vortex mo-
tion on a hypersphere as all vortices are identical (infinite
range of motion can only be obtained with circulations of
different signs). On the other hand the motion of passive
tracers evolves on a much wider range. This was previ-
ously observed in reference [52], where it was shown that
far from the region where vortices are confined, tracers
diffuse radially with a vanishing diffusion rate. Contrary
to three vortex systems, the chaotic nature of the vor-
tex motions destroys the barrier observed in quasiperiodic
flows which limits the chaotic sea to a finite region, and a
diffusive regimes sets in.

We would like to emphasize that our choice of four
identical vortices has been based first on simplicity but
also on the fact that the motion of the vortices is then con-
fined within a specific region of the plane centered around
the center of vorticity. If for instance we had changed the
strength of one vortex to its opposite value, sooner or
later we would have observed the formation of a traveling
dipole [60]. Since we consider a flow on the entire plane,
the dipole will just travel towards infinity leaving behind a
trivial system of two vortices. The transport properties of
such systems are then dramatically modified, as the sys-
tem becomes integrable as the dipole goes away, and just
transient chaos is expected.

Further analysis of tracers motion is made using snap-
shots of the system at different times, which was used in
[51] to visualize the cores surrounding vortices. For this
purpose 5000 passive tracers are initially placed in the
“strong chaotic region” where vortices evolve, and accord-
ing to Table 2, at a distance larger than 0.3 from any
vortex. Results are presented in Figure 7. As mentioned
earlier on for the case of quasi periodic flow with four
vortices [52] or three [38,41], circular-shaped islands of
regular motion are surrounding each vortex. This feature

Fig. 7. Snapshots of a system with 5000 particles at two differ-
ent times. The vortex cores are showing, as expected. The core
size is estimated around 0.3. On the bottom plot, some trac-
ers are sticking to the cores. We also notice the almost regular
motion described in [52] for the far region. The initial position
of the tracers are taken in the stochastic sea.

is preserved in the considered chaotic flow. Although the
motion of tracers within the core is probably not regular, a
barrier exists and prevents tracers to enter a a circular re-
gion around the vortex (see Fig. 7), which we will refer to
as vortex “core” from now on, regular motion or not. The
presence of cores in this system allows to define de facto a
Lagrangian size of a point vortex. It would be therefore in-
teresting to check if the Lagrangian definition of coherent
structures boundary given in reference [37] gives the same
results: namely are the cores detected, and if so what is
there size?

One snapshot illustrated in Figure 7 shows also that at
certain times tracers can accumulate at the core’s bound-
ary. This property of the tracer’s motion is crucial and
was not directly addressed in previous work. In fact, this
observation is very similar to the phenomenon of stick-
iness around vortex cores observed in 3-vortex systems,
and if the analogy retains, this form stickiness should have
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a large influence on the transport properties of the flow,
if not essential when one focuses in the area of “strong
chaos” [40,41].

3.3 Stickiness around the vortex core

The previous observation of both the existence of cores
and the possible accumulation of tracers around cores lead
to further investigations of the cores surroundings. First
of all, one can wonder if the tracers can cross the barrier
(if cores are analogous to porous media), which could ex-
plain the observed accumulation. Second, whether or not
the barrier is crossed, it is important to know if a typical
(trapping) sticking time can be defined.

A prerequisite to these questions is the estimation of
the size of the core. For this matter, we placed tracers at
a given distance in the vicinity of one vortex, computed
its trajectory up to an arbitrary large time, and checked
whether or not the tracers remained in the vicinity of the
chosen vortex. A simulation was carried out for t = 5×104.
One tracer placed at a distance r = 0.25 escapes around
t ≈ 3×104, while it remains trapped for r = 0.24. Tracers,
which are placed closer to the vortex than r = 0.24, remain
all trapped, while tracers placed at a larger distance than
r = 0.25 escape at smaller and smaller times. Therefore,
given the considered initial conditions and the time spans,
we estimate the size of the cores rc around 0.24. And, as in
the case of a three vortex system [41], we notice that the
measured value is is in good agreement with the expected
upper limit of rc given by half the minimum inter-vortex
distance (see Tab. 2). Moreover the fact that, as the dis-
tance from tracer to the vortex is increased, the time of
escape diminishes, seems a good indicator of a stickiness
phenomenon. However, the nature of the trapped tracer
trajectory is unclear. A super-imposition of the two tra-
jectories computed for r = 0.25 and r = 0.24 reveals a
cross-over between the explored phase space, and therefore
vanishing diffusion-like processes with respect to r may
be present. Namely, in the far region vanishing-diffusion
takes place. From a tracers point of view, the region were
vortices are confined becomes point like, and the flow re-
semble the one created by one point vortex. Symmetri-
cally, since inter-vortex distance are bound, as the tracer
is placed deeper inside the core, the flows becomes more
one-point vortex like; the difference with the far region
being that the core has a chaotic motion.

Once the size of the core was determined, we tried to
measure the escape time T of a tracer as a function of
the distance from the vortex r, expecting from the profile
of T (r) to obtain a more accurate value of rc and infor-
mation on sticking times. This attempt was unfruitful, as
the dependence of the escape time T on the initial posi-
tion of the tracer on the circle of radius θ(t) (phase) r is
very sensitive. Another way to infer these properties was
made by initializing a large number of tracers uniformly
distributed on a circle of radius r = 0.24 + ε around one
vortex, and obtain a distribution of escape times ρe(T, r).
This approach revealed itself also not convincing. Indeed,
groups of particles are escaping a given specific times, and

Fig. 8. Distance between one vortex and the others ri4
versus time (upper figure). We notice the pairing of two vortices
around t = 4.553 104. It affects the behavior of the “trapped”
tracer (bottom figure). The bottom figure shows the distance
r between one vortex and a passive tracer ‘trapped’ in the
core versus time, while the pairing occurs, fluctuations are
amplified. Initial vortex positions is [(1.747, 1.203) (−

√
2/2, 0)

(
√

2/2, 0) (0,−1)]. Initial position of the tracer is (0,−1.24)
(close to the fourth vortex).

the frequency of these escapes is not high enough to allow
us to obtain a smooth distribution ρe(T, r) independent
of the initial conditions of the vortex subsystem in a rea-
sonable amount of computation time.

3.4 Tracer trapping (escaping) mechanism and core
contamination

The observed sensitivity of escape times T on the phase
of the tracer and the strong discontinuity in T of pre-
liminary measures of ρe(T, r) suggests a non uniform be-
havior of the vortex system, with important consequences
on the vortex core surroundings. One potential candidate
of this special behavior is the pairing of two vortices ob-
served earlier on, as the relative position of the tracer to
the second vortex and the sticky nature of vortex-pairing
provide a good origin to the difficulties arising in the pre-
vious attempts. In a first step to check for this possible
influence, a tracer was placed within the core. Its rela-
tive distance from the attached vortex is measured con-
currently with the inter-vortex distances. The numerical
data is collected in a time range where a pairing occurs,
and the tracer is trapped in one of the vortex forming the
pair. The time evolutions of the distances are presented in
Figure 8. This preliminary testings confirms that vortex-
pairing has strong effects on tracers motion, as while the
pairing lasts, Figure 8 shows that fluctuations of the rel-
ative distance r(t) are increased. We notice also that the
increase of fluctuations goes without a noticeable jump of
the averaged distance from the vortex, which points to a
strong dependence on the phase of r(t) during a pairing.
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Fig. 9. Four consecutive snapshots for the four vortex of equal
strengths and 1000 particles, corresponding to four consecutive
pairing of the vortices. Even though the particles are initially
placed around one vortex, as pairings occur, some of them jump
from a vortex core to another and remain on them after the
pairing. While the vortex-pairing occurs some particles eventu-
ally escape from the cores. We notice also that after four pair-
ings all cores have been “contaminated” and are populated
with tracers originating from the first core and while about
10% of tracers have escaped from the region surrounding all
four cores. Initial vortex position is [(1.747, 1.203) (−

√
2/2, 0)

(
√

2/2, 0) (0,−1)]. Particles are uniformly initialized on the
circle of radius r = 0.27 around the fourth vortex.

Continuing our step by step investigations, we initial-
ized 1000 tracers on a given circle of radius r = 0.24 + ε
around one vortex and made four different snapshots of
the system, the first one before any pairing occurred, and
the last three in the middle of 3 consecutive pairings. The
results are shown in Figure 9. This plot explain directly
the observed discontinuity ρe(T, r). We see that as pair-
ing occurs the periphery of the two cores merge, allow-
ing tracers to jump from one core to the other. In this
process some tracers escape (and reversibly get trapped).
When the pair is broken, each cores keeps its share of
exchanged tracers and only very few tracers escape from
the reformed cores. We also notice in Figure 9 that trac-
ers initially trapped on one core “contaminate” rapidly
the other cores, and we will refer to this phenomenon
as “core-contamination”. To better understand this core-
contamination process a zoom of the first exchange is pre-
sented in Figure 10. While the two vortices are bound, the
local topology changes, and a peripheral merging of the
cores occurs, allowing particle exchange between cores. In
this quasi 2-vortex system a quasi hyperbolic point in the
middle between the two vortices emerge, where the ve-
locity field results from the contribution of the two far
vortices. As a result while the tracer finds itself in this
area, its motion is governed by the position of the two
distant vortices, allowing it to jump from one orbit to an-
other and possibly one core to another. A typical relative

Fig. 10. Zoom of Figure 9 for the two vortex involved in the
first pairing (1000 particles). The vortex on the right is the clos-
est to the initial position of the particles. This kind of behavior
is characteristic of pairing of two vortices. During the pairing of
the two vortices, the periphery of the cores “merge” and form a
larger “island” where particles are trapped on and may trans-
fer from a vortex to another. Some particles may eventually
escape in the process. Initial vortex position is [(1.747, 1.203)
(−
√

2/2, 0) (
√

2/2, 0) (0,−1)]. Particles are uniformly initial-
ized on the circle of radius r = 0.27 around the fourth vortex.

trajectory of a bound tracer is represented in Figure 11.
One notices that while the jump occurs the trajectory is
singular.

These different events show the difficulty in defining
properly a typical sticking time from a distribution ρ(t, r),
independent from the system’s initial conditions. First of
all, while a tracer jumps from one core to another it con-
tinues to stick, so the sticking area has to be considered
globally on the four cores, second even if particle do no
jump from one core to the other, pairing allows them to
jump from one orbit to another, so the dependence on
r of ρ is unclear. Finally, as the distribution of pairing
times decays as a power-law, rare events with long last-
ing pairings are not improbable, implying a strong lasting
dependence on initial conditions for the computation of
ρ(t, r). For instance in Figure 11, after the last jump, the
tracer finds itself further from the center of the core, we
also notice 3 aborted jumps at t ≈ 122, 123, 127, and fi-
nally around t = 130, the tracer escapes as a last vortex
approaches. Consequently, trapped particles are subject
to escape from the cores as more pairing occurs, this il-
lustrated in Figure 9, where more and more tracers have
escaped after each pairing.

We may speculate that this core-contamination phe-
nomenon allows an unexpected type of transport for the
tracers in many vortex systems. Indeed, tracers which find
themselves in this peripheral zone, can jump from vor-
tex to vortex, therefore their transport properties should
match the transport properties of the sub-vortex system.
Note also, that if all tracers are initially on one core like
in Figure 9 in a many vortex system the dispersion of
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Fig. 11. The upper plot shows the distances ri between one
advected particle and the four vortices. The tracer is initially
placed close to one vortex and sticks around the vortex for a
certain time , then it jumps and sticks onto another vortex .
After a transition time it gets back on the first vortex, we no-
tice that the tracers has jumped to another orbit further from
the vortex. At the end of the plots the particle finally escapes
from the cores region. The bottom plot shows the trajectories
in real space for δt = 4 of time-interval (from t = 114 to 118).
The black line refers to the trajectory of the particle, while the
dark and light gray lines to two the vortices involved in the
jump. We note that while the jump occurs there is a “singular-
ity” on the trajectory of the advected particle. Initial vortex
position is [(1.747, 1.203) (−

√
2/2, 0) (

√
2/2, 0) (0,−1)]. The

initial position of the tracer is (0,−1.27).

tracers should occur mainly on the different cores, imply-
ing non typical mixing properties “targeted” to the spe-
cific region of the phase space consisting of the reunion of
the periphery of all cores. This phenomenon, if persistent
for more realistic systems may have some interesting prac-
tical applications. Finally, we mention that the sensitivity
in these jumps from core to core in the relative position
on the core of the tracer θ(t), must affect the computa-
tion of finite time Lyapunov exponents in these regions,
as their value will be influenced by the chaoticity of θ(t).
It is therefore possible that non-zero Lyapunov exponents
are associated with trapped tracers, and we may expect
a typical value related to typical pairing frequency and
pairing lifetime.

3.5 Motion within the core

We conclude the section by briefly investigating the mo-
tion of tracers within the core. First the region within the
core which is subject to a strong apparent influence from
pairing is localized. For this purpose, tracers are initialized
within the cores at different distances form the vortex, and
a snapshot of the system is made when two vortices are
pairing in Figure 12. As expected, trajectories look more
and more circular as tracers are closer to the vortex, and

Fig. 12. Different snapshots with 1000 particles, initialized at
different values of the radius. The snapshots are taken while the
first pairing occurs. An egg-shape form of the cluster formed by
the particles appears in plot C. Suggesting a strong influence
of pairing for r > 0.2. Initial vortex position is [(1.747, 1.203)
(−
√

2/2, 0) (
√

2/2, 0) (0,−1)]. Radii for the A,B,C,D plots are
respectively r = 0.135, r = 0.18, r = 0.225, r = 0.27.

egg-shape deformation due to pairing appears for r > 0.2.
To confirm this statement in Figure 13 we plotted suc-
cessive positions of tracers during a pairing. The plot is
made in a reference frame where the two vortices do not
rotate and centered on the local center of vorticity, the po-
sition of the tracer is recorded for each time ti such that
the distance between the two vortices r12(ti) is constant.
This plot is in spirit very similar to the Poincaré maps
computed in [38], and gives a good insight on the local
topology. However as pairing time is finite, we typically
obtain only ∼ 10 iterations of the map, which limits the
resolution in Figure 13.

Possible diffusion-like behavior of tracers need there-
fore be investigated deep within the core. To detect this
behavior, we initialized 200 tracers on a radius r = 0.18,
and let the system evolve up to t = 5 × 104. The mean
and standard deviation 〈r(t)〉 and σ(r, t) are presented in
Figure 14. We notice that for the amount of particles con-
sidered and the time-length of the simulation, no diffusive
behavior is observed. All particle remain trapped on the
r = 0.18 orbit. The absence of diffusion is although not
granted, but to be more conclusive we would need a larger
amount of tracers, and larger times. We are then con-
fronted with numerical problems. The divergence of the
absolute speed as the vortex is approached, necessitate
increasingly smaller time steps, which lead to increasingly
large effective simulation times, and becomes an hindrance
when one wants to compute statistics over a large num-
ber of tracers whose trajectories are computed over large
times. Anyway for the time considered, the non obser-
vation of diffusion suggests that the inside of the cores
are regions of almost regular motion, if not regular, and
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Fig. 13. Trajectories of 25 advected particles, for different
initial conditions The plot is made in the co-rotating frame
with two vortices during a pairing lasting ∆t = 15, and particle
positions recorded for constant inter-vortex distance. Initial
vortex position is [(1.747, 1.203) (−

√
2/2, 0) (

√
2/2, 0) (0,−1)].

Particles a uniformly distributed on circles of radii: r = 0.27,
r = 0.20, r = 0.135.

therefore cores are good trapping regions, which exchange
little (if not nothing) with the outside strong chaotic re-
gion.

Finally the dependence of σ(r, t) as a function of r is in-
vestigated. Results show that for up to r = 0.2, σ(r) ∼ r3

(see Fig. 15). This results is in fact very similar to the
symmetry previously discussed between what is observed
in the far region [52] and the motion within the core.
Namely this results translates into the fact that fluctu-
ations scale as ∼ r6 where r is the small parameter, and
in the far field region it has been shown that the diffu-
sion coefficient behaves as D ∼ 1/R6, where R is the dis-
tance from the center of vorticity and 1/R is the small
parameter. In fact we note that close to the vortex we
have θ̇ ≈ k/2πr2, therefore since σ(r, t) ∼ r3, we reason-
ably expect the standard deviation σ(k/2πr2, t) ≈ σ(θ̇, t)
to be only a function of t. Results are shown in Fig-
ure 15, and we effectively notice that for all different
radii, the fluctuations are more or less concentrated on
one curve. It is then sufficient to consider only one or-
bit to study of the temporal behavior. Note also that for
r = 0.18, we obtain σ(r)2 ∼ 3.4 × 10−5, so for the ob-
served time if we had diffusion we should observe fluctu-
ations of the order σ2(r, t) ∼ σ2(r)t ≈ 1 for t = 5 × 104.
In this light, since such growth of fluctuations was not ob-
served in Figure 14, we can exclude the possibility of diffu-
sive (or superdiffusive) behavior within the core. However,
subdiffusive behavior is still a possibility, as for instance
(5 × 104)1/8 ≈ 3.87 so the previous argument does not
hold, and we need very long simulations to clarify the
temporal behavior of fluctuations.
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Fig. 14. On the left the mean value 〈r(t)〉 as function of
time is plotted. The average 〈r(t)〉 can be considered constant
in time. And on the right, the standard deviation σ(r, t) =p
〈(r(t)− 〈r(t)〉)2〉 as a function of time is plotted. We do not

observe any quantitative diffusion phenomenon, and conclude
on the absence of diffusion for larger times span. Data is com-
puted using 200 tracers. All tracers are uniformly distributed
at t = 0 on the circle of radius r = 0.18.

4 Conclusion

In this paper we have investigated the motion of a pas-
sive tracer in a chaotic flow generated by four identical
point vortices. In the process of this study, a particular
attention has been made to the vortex subsystem. Since
the vortices are identical, the vortex system is subject to
the additional discrete symmetry resulting from invariance
through the group of permutations. This lead to introduce
a new Poincaré section. This section has the advantage to
exhibit the non homogeneity of the phase space, result-
ing from a special behavior of the vortex system corre-
sponding to the phenomenon of vortex-pairing. Pairing
results in a temporary loss of a degree of freedom of the
whole systems, it is therefore associated with a stickiness
phenomenon to an object of lesser dimension than the
accessible phase space, and is linked to local changes of
density in the Poincaré section illustrated in Figure 2.
Such behavior can then be thought of as a chaos-chaos
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Fig. 15. On the upper plot the standard deviation σ(r) =p
〈(r − 〈r〉)2〉 as a function of the distance from the center of

the vortex r is represented. The log-log plot suggests a behavior
σ ∼ r2.93 ∼ r3. On the bottom plot the standard deviation
σ(1/r2, t) is computed as a function of time for the different
radii used in the upper plot. All curves appear more or less
to merge suggesting that σ(1/r2, t) is only a function of time.
Data is computed using 500 tracers. All tracers are uniformly
distributed at t = 0 on a circle of radius r.

intermittent behavior. Vortex-pairing, by involving only
two vortices, is reminiscent of high-dimensional vortex sys-
tems where low-dimensional vortex behavior was shown to
be influential [12]. Further investigations have lead to com-
pute pairing-time distributions. The probability density
exhibits a power-law tail typical the of stickiness behavior.
The power-law exponent is found to be around α ≈ 3.6,
implying finite typical (average) sticking time and quan-
titatively agree with its analytical estimate α ≈ 7/2. We
note that since most merging processes in 2D turbulence
occur while two same sign-vortices are pairing, the finite-
ness of pairing time by the introduction of another specific
time scale besides the typical merging time, may play an
important role.

Passive tracers motion are analyzed for a given specific
initial condition of the vortices corresponding to a chaotic
flow. The emphasis is made on qualitative behavior as only
one condition of the parameter space is explored and com-

parison is made to previous work [51,52] as well as results
obtained for quasiperiodic flows. The presence of cores
surrounding the vortices is confirmed, the sticking behav-
ior of the tracers to the cores is illustrated, and an estima-
tion of the core size is measured, which is in good agree-
ment with the estimation proposed in reference [51], given
by minimum inter-vortex distance. The influence of vortex
pairing on tracers dynamics is studied. This pairing phe-
nomenon proves to be a good trapping (untrapping) mech-
anism explaining the observed stickiness of tracers around
cores. Moreover, besides being responsible for tracers trap-
ping, vortex-pairing allows also tracers to jump between
cores. For the motion of the tracers located deep within
the cores, we have shown that for the time span studied,
no radial diffusion-like behavior is observed. On the other
hand, the dependence of the fluctuations as a function of
the distance from the vortex is measured and these are
shown to scale as r6, which gives, in regards to the small
parameter, the same order as the scaling previously com-
puted in the far field region in reference [52].

To conclude, the motion of a passive tracer in the
chaotic flow generated by four point vortices has four
different typical behaviors in four distinct regions of the
phase space. In the far field region, its motion is almost
regular, with some irregular jumps from one orbit to the
other. Its motion is chaotic in the region of “strong chaos”,
corresponding to the area where the vortex motion is re-
stricted (see [52]). In the periphery of the cores, tracers
can stick to one core and travel with one specific vortex,
as well as travel through the phase space by jumping from
one core to another. Finally deep inside the vortex core,
the tracers remain trapped on a specific orbit for the ob-
served time length of our simulations, and travel with the
corresponding vortex. Transport properties are subject to
the influence of regions to which a tracer has access, which
counts all regions besides the inner of the cores. The exis-
tence of stickiness on vortex cores and regular motion in
the far field region allows us, by analogy with three vor-
tex systems [40,41], to speculate that long time behavior
of tracers is governed by these two regions. Each of them
dominating one part of the moments, namely the low mo-
ments for the far field region, and the high moments for
the periphery of cores. Moreover, the possibility for stick-
ing tracers to jump from core to core, leads to anticipate
on the existence of special transport features in many vor-
tex systems. It is indeed likely that this feature allows to
transport highly concentrated regions of passive tracers
over large distances with controlled dilution and at fast
pace. Namely, in many vortex systems, contrary to trac-
ers located within one core which are transported by one
and only vortex and hence may be trapped for relatively
long times in some slow moving cluster of vortices. Those
located on the core’s periphery should quickly spread on
all other cores periphery and therefore populate the whole
space accessible to the vortices; but by remaining on the
cores, the spreading should occur with relatively little di-
lution compared to the region of strong chaos.
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